See superslice on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "slice" }, "expansion": "super- + slice", "name": "prefix" } ], "etymology_text": "From super- + slice.", "forms": [ { "form": "superslices", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "superslice (plural superslices)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "35 34 31", "kind": "other", "name": "English terms prefixed with super-", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2012, M.E. Bozhüyük, Topics in Knot Theory, →ISBN, page 69:", "text": "The Kinoshita-Terasaka knot K_(KT), illustrated in Fig. 1 is the first example of a superslice, which has been know at latest in 1970 by R.H. Fox, F. Hosokawa, T. Yangawa and others.", "type": "quote" } ], "glosses": [ "A knot for which there is an almost identical trivial knot." ], "id": "en-superslice-en-noun-O8YaOIws", "links": [ [ "mathematics", "mathematics" ], [ "knot", "knot" ], [ "trivial", "trivial" ] ], "raw_glosses": [ "(mathematics) A knot for which there is an almost identical trivial knot." ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Computing", "orig": "en:Computing", "parents": [ "Technology", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "19 20 61", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "35 34 31", "kind": "other", "name": "English terms prefixed with super-", "parents": [], "source": "w+disamb" }, { "_dis": "20 17 62", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "11 10 79", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2010, Scott Hauck, André DeHon, Reconfigurable Computing:", "text": "These transformations occur only if all bit slices within a superslice have identical context (e.g., all bit slice input ports a within a superslice have the constant value 0 applied from the outside). Otherwise, the superslice is left unchanged.", "type": "quote" } ], "glosses": [ "A slice that is an amalgamation of smaller slices." ], "id": "en-superslice-en-noun-8wo39M-b", "links": [ [ "computing", "computing#Noun" ], [ "slice", "slice" ] ], "raw_glosses": [ "(computing) A slice that is an amalgamation of smaller slices." ], "topics": [ "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superslice.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.ogg" } ], "word": "superslice" } { "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "slice" }, "expansion": "super- + slice", "name": "prefix" } ], "etymology_text": "From super- + slice.", "head_templates": [ { "args": { "1": "-" }, "expansion": "superslice (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "35 34 31", "kind": "other", "name": "English terms prefixed with super-", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2016, Daniel Ruberman, “On smoothly superslice knots”, in arXiv:", "text": "Answering a question of Livingston-Meier, we find smoothly slice (in fact doubly slice) knots in the 3-sphere with Alexander polynomial equal to 1 that are not smoothly superslice..", "type": "quote" } ], "glosses": [ "Having the property of being a superslice." ], "id": "en-superslice-en-adj-sGyjs0Bu", "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics, of a knot) Having the property of being a superslice." ], "raw_tags": [ "of a knot" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superslice.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.ogg" } ], "word": "superslice" }
{ "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with super-", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "slice" }, "expansion": "super- + slice", "name": "prefix" } ], "etymology_text": "From super- + slice.", "forms": [ { "form": "superslices", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "superslice (plural superslices)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English terms with quotations", "en:Mathematics" ], "examples": [ { "ref": "2012, M.E. Bozhüyük, Topics in Knot Theory, →ISBN, page 69:", "text": "The Kinoshita-Terasaka knot K_(KT), illustrated in Fig. 1 is the first example of a superslice, which has been know at latest in 1970 by R.H. Fox, F. Hosokawa, T. Yangawa and others.", "type": "quote" } ], "glosses": [ "A knot for which there is an almost identical trivial knot." ], "links": [ [ "mathematics", "mathematics" ], [ "knot", "knot" ], [ "trivial", "trivial" ] ], "raw_glosses": [ "(mathematics) A knot for which there is an almost identical trivial knot." ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ "English terms with quotations", "en:Computing" ], "examples": [ { "ref": "2010, Scott Hauck, André DeHon, Reconfigurable Computing:", "text": "These transformations occur only if all bit slices within a superslice have identical context (e.g., all bit slice input ports a within a superslice have the constant value 0 applied from the outside). Otherwise, the superslice is left unchanged.", "type": "quote" } ], "glosses": [ "A slice that is an amalgamation of smaller slices." ], "links": [ [ "computing", "computing#Noun" ], [ "slice", "slice" ] ], "raw_glosses": [ "(computing) A slice that is an amalgamation of smaller slices." ], "topics": [ "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superslice.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.ogg" } ], "word": "superslice" } { "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with super-", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "slice" }, "expansion": "super- + slice", "name": "prefix" } ], "etymology_text": "From super- + slice.", "head_templates": [ { "args": { "1": "-" }, "expansion": "superslice (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "English terms with quotations", "en:Mathematics" ], "examples": [ { "ref": "2016, Daniel Ruberman, “On smoothly superslice knots”, in arXiv:", "text": "Answering a question of Livingston-Meier, we find smoothly slice (in fact doubly slice) knots in the 3-sphere with Alexander polynomial equal to 1 that are not smoothly superslice..", "type": "quote" } ], "glosses": [ "Having the property of being a superslice." ], "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics, of a knot) Having the property of being a superslice." ], "raw_tags": [ "of a knot" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superslice.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/a/a1/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superslice.wav.ogg" } ], "word": "superslice" }
Download raw JSONL data for superslice meaning in All languages combined (4.2kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-08 from the enwiktionary dump dated 2025-01-01 using wiktextract (9a96ef4 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.